
STA3000F: Final Exam

December 11, 2023

• Submission: Please submit your solutions by noon at Dec 12th through Quercus. Under
emergent situation, you may also submit the solution directly to wenlong.mou@utoronto.ca,
and you’ll typically have a one-hour grace period.

• Policy: Please work on the problem set by yourself. Collaboration or resorting to
external help are not allowed. On the other hand, please feel free to refer to any
textbooks, papers, and online materials (or even ChatGPT, if you trust it).

• Grading: Each question is worth 20% of the final exam. All these questions can be
solved using results from the lectures and the homeworks. You are welcome to also
use ideas from other resources (books, papers, etc.). However, you are required to
provide self-contained solutions to the problems using only the results from lectures and
homeworks. Citing existing results directly as a black box may lead to deductions in the
points depending on the nature of these results.

• Hints: The difficulties of problems are not in ascending (or descending) order. Please
try to allocate your time wisely. Besides, partially-solved questions may get partial
credits.

• Have fun!

Q1. Singularities in location models

Given α ∈ (0, 1), consider the one-dimensional probability density function

p(x) := Z−1|x|−α · exp(−x2), for x ∈ R,

where Z > 0 is a normalization constant to make sure that
∫
R p(x)dx = 1.

Consider the location class pθ(x) = p(x− θ) with one-dimensional parameter θ ∈ R, and
let (Xi)

n
i=1

i.i.d.∼ pθ. For h > 0, consider the following simple vs. simple testing problem:

H0 : θ = 0 vs. H1 : θ = h.

1. Given γ ∈ (0, 1), find the UMP level-γ test (you don’t need to calculate the cutoff values
explicitly).

2. Find a threshold hn such that when h ≤ hn, there is E0[ϕ] + E1[1 − ϕ] ≥ 1/4 for any
possible test ϕ. Please try to find the largest possible hn (up to constant factors) you
can. You will get full grade if you get the optimal lower bound (though you don’t need
to prove it’s unimprovable), and partial grades if you get a sub-optimal one.
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Q2. M-estimation with convex loss

Suppose that θ 7→ f(θ;x) is a convex and differentiable function in θ ∈ Rd, for any x.

Let X1, X2, · · ·Xn
i.i.d.∼ P and let F (θ) := E[f(θ,X)], where the function F is uniquely

minimized at θ∗ (over Rd). Assume furthermore that there exist functions L1 and L2, such
that E[L1(X)2] + E[L2(X)2] < +∞, and for any θ1, θ2, x, we have

|f(θ1;x)− f(θ2;x)| ≤ L1(x) ∥θ1 − θ2∥2 , and ∥∇f(θ1;x)−∇f(θ2;x)∥2 ≤ L2(x) ∥θ1 − θ2∥2 ,

Define the M -estimator

θ̂n := arg min
θ∈Rd

1

n

n∑
i=1

f(θ;Xi).

Prove that θ̂n
p−→ θ∗.

Q3. Binary classification

Consider the supervised learning problem, with i.i.d. data (Xi, Yi)
i.i.d.∼ P, where Xi ∈ X and

Yi ∈ {−1, 1}. Let F be a class of functions mapping from X to {−1, 1}. Define the ERM
estimator

f̂n := argmin
f∈F

1

n

n∑
i=1

1
[
Yi ̸= f(Xi)

]
.

Define the Rademacher complexity

Rn(F) := E
[
sup
f∈F

1

n

n∑
i=1

εif(Xi)
]
, for i.i.d. Rademacher random variables (εi)

n
i=1.

Consider the loss functional L(f) := E[Y ̸= f(X)]. Show that there exists a universal constant
c > 0, such that

L(f̂n) ≤ inf
f∈F

L(f) + cRn(F),

with probability 1/4.

Let X1, X2, · · · , Xn
i.i.d.∼ N (0, Id), and consider the class F := {x 7→ 21[x⊤θ > 0]− 1 : θ ∈

Rd} of linear classifiers. Show that when n ≤ d, we have Rn(F) = 1.

Q4. Estimating the derivatives

Given a scalar β > 1, let p be a probability density function on R such that p ∈ Σ(β) (i.e.,
β-th order Hölder class). We are interested in nonparametric estimation of the derivative p′.

Given a kernel function K : R → R supported on [−1, 1] satisfying the conditions∫
R
ujK(u)du =

{
1 j = 1,

0 j = 0, 2, · · · , ⌊β⌋.
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Let X1, X2, · · · , Xn
i.i.d.∼ p. Given bandwidth h > 0, consider the kernel-based estimator

d̂n(x) :=
1

nh2

n∑
i=1

K
(Xi − x

h

)
For any x0, and prove the MSE bound

E
[
|d̂n(x0)− p′(x0)|2

]
≤ n

−2(β−1)
1+2β .

with an optimal bandwidth h = hn

Q5. Lower bound for isotonic regression

Consider the function class

F :=
{
f : [0, 1] → [0, 1], f is non-decreasing

}
.

In the homework, we have proved a (near-optimal) upper bound for estimating f . Now we
turn to the lower bound.

Given f∗ ∈ F , let the observations be Yi = f∗(xi) + εi with xi = i/n for i = 1, 2, · · · , n,
where the noises (εi)

n
i=1 are i.i.d. standard normal random variables.

Prove that

inf
f̂

sup
f∗∈F

E
[ ∥∥∥f̂ − f∗

∥∥∥2
n

]
≥ cn−2/3,

for a universal constant c > 0.
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