
STA3000F: Homework 1

Due: October 11, 2024, before class on Quercus

Q1: Application of concentration inequalities

For any integer n > 0, define the Hamming distance on the hypercube {0, 1}n

dH(x, y) :=
n∑

i=1

1xi ̸=yi , for any x, y ∈ {0, 1}n.

Show that there exists a universal constant c > 0, such that for any n > 0, there exists a
subset A ⊆ {0, 1}n with |A| ≥ ecn, satisfying

dH(x, y) ≥ n

4
, for any pair x, y ∈ A.

[Hint: consider a subset formed by i.i.d. uniform random samples from the hypercube.]
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Q2: weighted loss function

Consider a class of probability models (Pθ : θ ∈ R) with density functions pθ for θ ∈ R. We
want to estimate a functional g(θ) under the loss function

L(θ; a) = (a− g(θ))2w(θ),

for a known non-negative weight function w.

1. Let π be a prior distribution, find the Bayes estimator under the loss function L. (Express
it using the posterior distribution; you can assume integrability of relevant functions).

2. Let Pθ := Ber(θ) for θ ∈ (0, 1), take g(θ) = θ, and let the weight function be w(θ) = 1
θ(1−θ) .

Find a minimax estimator under this loss function
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Q3: (Bayes) Crámer–Rao lower bounds

Given θ ∈ Rd, we observe the pair (X,Y ) ∈ Rd × {0, 1} as follows

X ∼ P, and Y |X ∼ Ber
( 1

1 + e−θ⊤X

)
.

We assume that P has a density with respect to Lebesgue measure and that E
[
∥X∥22

]
< +∞.

1. Derive the Fisher information matrix I(θ) for estimating θ (express it as an expectation
under the distribution of X).

2. Let us consider i.i.d. samples (Xi, Yi)
n
i=1 from the distribution above. Consider the

special case of d = 1 and X ∼ N (0, 1) for simplicity. Show that there exists a universal
constant c > 0, such that

inf
θ̂

sup
θ∈[θ0−ε,θ0+ε]

E
[
|θ̂ − θ|2

]
≥

(
nI(θ0) + cnε+

c

ε2

)−1
,

valid for any n ≥ 1 and ε ∈ (0, 1).
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Q4: Le Cam’s two-point method

Consider the parameter estimation problem for a class (Pθ : θ ∈ Θ). Let g(θ) ∈ R be the
functional of interest, and consider a mean-squared loss function.

1. Show that

inf
δ

sup
θ∈Θ

E
[
|δ(X)− g(θ)|2

]
≥ 1

8
sup

θ0,θ1∈Θ

{
|g(θ0)− g(θ1)|2 ·

(
1− dTV(Pθ1 ,Pθ0)

)}
.

[Hint: use the testing lower bound.]

2. Consider the following special case: Pθ = Unif([0, θ]), and θ ∈ [1, 2]; we are interested in

estimating g(θ) = θ. Given samples X1, X2, · · · , Xn
i.i.d.∼ Pθ, show a lower bound on the

minimax risk

inf
θ̂n

sup
θ∈[1,2]

E
[
|θ̂n(X1, X2, · · · , Xn)− g(θ)|2

]
.

It suffices to give a tight rate of convergence as n grows. The constant pre-factor in the
lower bound does not matter.
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