STA3000F: Homework 2

Due: Nov 22 end of day on Quercus

Q1: VC dimension of two-layer neural networks

Given a pair of integers $m, d > 2$, consider the following class of two-layer neural networks that map \mathbb{R}^d to binary labels

$$
\mathcal{F} := \left\{ x \mapsto \sigma \left(\sum_{i=1}^m a_i \sigma(w_i^\top x) \right) : w_i \in \mathbb{R}^d, a_i \in \mathbb{R}, \text{ for any } i = 1, 2, \cdots, m \right\},\
$$

where we use a binary activation function $\sigma(x) := \mathbf{1}_{x \geq 0}$.

Prove that

$$
\mathsf{VC}(\mathcal{F}) \leq cmd\big(\log m + \log d\big),
$$

for some universal constant $c > 0$.

Q2: rate theorem with non-standard growth conditions

Following empirical process notations, we denote $Pf := \mathbb{E}_P[f(X)]$ and $P_nf := n^{-1} \sum_{i=1}^n f(X_i)$. Let us consider the M-estimator $\theta_n := \arg \min_{\theta \in K} P_n f_\theta$. We define the population-level minimizer $\theta^* := \arg \min_{\theta \in K} Pf_{\theta}$. Suppose that

$$
Pf_{\theta} - Pf_{\theta^*} \geq \|\theta - \theta^*\|_2^4, \quad \text{and} \quad \mathbb{E}\Big[\sup_{\substack{\theta \in K \\ \|\theta - \theta^*\|_2 \leq u}} |(P_n - P)(f_{\theta} - f_{\theta^*})| \Big] \leq \phi_n(u).
$$

Find a high-probability bound on the convergence rate $\left\|\widehat{\theta}_n - \theta^*\right\|_2$, and prove your result. You may assume some growth condition on the function ϕ_n , and please specify such a condition used in your proof clearly.

[The answer should be expressed in terms of a fixed-point equation related to the function ϕ_n .]

Q3: classical Donsker's theorem

Let $(X_k : k \geq 0)$ be a one-dimensional simple random walk, i.e., $X_0 = 0$ and $X_{k+1} = X_k + \varepsilon_{k+1}$, where $(\varepsilon_k)_{k=1,2,\cdots}$ are i.i.d. Rademacher random variables. Let $(B_t : t \geq 0)$ be a standard Brownian motion.^{[1](#page-2-0)} Prove that

$$
\left(\frac{1}{\sqrt{n}}X_{\lfloor nt \rfloor}: 0 \le t \le T\right) \xrightarrow{d} (B_t: 0 \le t \le T),
$$

for any $T > 0$.

[Hint: it suffices to verify finite-dimensional marginal convergence and stochastic equicontinuity. To verify the latter, we can use concentration inequalities discussed in previous lectures.]

¹A standard Brownian motion is Gaussian process defined on $(t : t \ge 0)$ such that $\mathbb{E}[B_t] = 0$ and $\mathbb{E}[B_t B_s] = \min(t, s)$ for any $t, s \geq 0$.

Q4: fat-shattering dimension

Let $\mathcal F$ be the class of convex and 1-Lipschitz functions that maps [0, 1] to [0, 1].

- 1. Prove that $\mathsf{VC}(\mathcal{F}) = +\infty$.
- 2. For any $\varepsilon > 0$, prove an upper bound on $\text{fat}_{\varepsilon}(\mathcal{F})$.

[Your grade will depend on how tight a bound you could get. For example, if the optimal bound is $\varepsilon^{-\alpha}$ but you get a correct proof of $\text{fat}_{\varepsilon}(\mathcal{F}) \leq \varepsilon^{-\beta}$ for some $\beta > \alpha$, you will get α/β fraction of the total marks. However, you do not need to justify the optimality of your bound.]