STA3000F: Homework 2

Due: November 8, 2025, 11:59pm on Quercus

Q1: convex loss function

Suppose that $\theta \mapsto f(\theta; x)$ is a convex function in $\theta \in \mathbb{R}^d$, for any x. Let $X_1, X_2, \dots X_n \overset{\text{i.i.d.}}{\sim} \mathbb{P}$ and let $F(\theta) := \mathbb{E}[f(\theta, X)]$, where the function F is uniquely minimized at θ^* (over \mathbb{R}^d). Assume furthermore that there exists function M, such that $\mathbb{E}[M(X)] < +\infty$, and for any θ_1, θ_2, x , we have

$$|f(\theta_1; x) - f(\theta_2; x)| \le M(x) \|\theta_1 - \theta_2\|_2$$
.

Define the M-estimator

$$\widehat{\theta}_n := \arg\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; X_i).$$

Prove that $\widehat{\theta}_n \xrightarrow{p} \theta^*$.

Q2: minimax testing for covariance matrix

Suppose that we have n i.i.d. samples $X_1, \dots, X_n \sim \mathcal{N}(0, \Sigma)$, where Σ is an unknown covariance matrix in $\mathbb{R}^{d \times d}$. Consider the testing problem

$$H_0: \Sigma = I_d \quad \text{vs} \quad H_1: \Sigma = I + \alpha v v^{\top},$$

where $v \in \mathbb{S}^{d-1}$ is an unknown unit vector and $\alpha > 0$ is a known constant. Find the smallest value of α such that there exists a test with sum of two types of error probabilities at most 1/4. Your answer should depend on n and d. You do not need to provide an explicit constant factor.

Hint: you may find the following formula useful: for $X \sim \mathcal{N}(0, I_d)$ and a matrix $A \in \mathbb{R}^{d \times d}$ with $||A||_{\text{op}} < 1$, we have

$$\mathbb{E}\Big[\exp\big(\frac{1}{2}X^{\top}AX\big)\Big] = \frac{1}{\sqrt{\det(I-A)}}.$$

Q3: contraction lemma of Rademacher complexity

Let \mathcal{F} be a class of functions mapping from \mathbb{X} to \mathbb{R} , and let $\phi: \mathbb{R} \to \mathbb{R}$ be an L-Lipschitz function, i.e., for any $a,b \in \mathbb{R}$, we have $|\phi(a) - \phi(b)| \leq L|a-b|$. Let X_1, \dots, X_n be i.i.d. samples from distribution \mathbb{P} on \mathbb{X} . Prove that

$$\mathbb{E}\Big[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^n\varepsilon_i\phi(f(X_i))\Big]\leq 2L\mathbb{E}\Big[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^n\varepsilon_if(X_i)\Big],$$

where $\{\varepsilon_i\}_{i=1}^n$ are i.i.d. Rademacher variables independent of $\{X_i\}_{i=1}^n$.

Q4: Rademacher complexity bounds

Given $x_1, x_2, \dots, x_n \in [-1, 1]^d$ for some $d \ge 1$, bound the empirical Rademacher complexity

$$\widehat{\mathcal{R}}_n(\mathcal{F}) := \mathbb{E}_{\varepsilon} \Big[\sup_{f \in \mathcal{F}} \Big| \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(x_i) \Big| \Big],$$

for the following function classes:

• Two-layer neural networks

$$\mathcal{F}_{\text{NN}}(B_1, B_2) := \Big\{ f : \mathbb{R}^d \mapsto \mathbb{R} \mid f(x) = \sum_{j=1}^m w_j \sigma(u_j^\top x), \|w\|_1 \le B_1, \forall j, \|u_j\|_1 \le B_2 \Big\},\,$$

where $\sigma(z) = \max\{0, z\}$ is the ReLU activation function. Note that the number of neurons m can be arbitrarily large.

• Bounded Lipschitz functions

$$\mathcal{F}_{\mathrm{BL}} := \Big\{ f : \mathbb{R}^d \mapsto \mathbb{R} \mid \sup_{x \in [-1,1]^d} |f(x)| \le 1, |f(x) - f(y)| \le \|x - y\|_2, \forall x, y \in [-1,1]^d \Big\}.$$

Try to provide the sharpest bound possible.