
STA3000F: Homework 3

Due: December 5, 2025, 11:59pm on Quercus

Q1: oracle inequality

During the lecture, we mostly focus on nonparametric estimation with the true function
belonging to the function class. In practice, all models are wrong, but some are useful.
Concretely, let us consider the fixed-design regression model with Yi = f∗(xi) + εi, where εi
are i.i.d. sub-Gaussian noise with parameter σ2. Let F be a convex class of functions. Define
the least-squares estimator over the function class F as

f̂n ∈ argmin
f∈F

1

n

n∑
i=1

(Yi − f(xi))
2.

Show that with high probability, we have∥∥∥f̂n − f∗
∥∥∥2
n
≤ inf

f∈F
∥f − f∗∥2n + cδ2n,

where δn is the critical radius defined via the fixed-point equation δ2n = Gn(δn); here Gn(δ) is
the localized Gaussian complexity. (Please note that the pre-factor in the approximation error
is exactly 1.)
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Q2: Gaussian smoothing

Define the function class

F :=
{
f : Rd → R | f(x) = EZ∼N (0,Id)[g(x+ Z)], for some function g with ∥g∥∞ ≤ 1

}
.

Let x1, x2, · · · , xn ∈ [0, 1]d be n fixed design points, and consider the observation model

Yi = f∗(xi) + εi, i = 1, 2, · · · , n,

where εi
i.i.d.∼ N (0, 1) and f∗ ∈ F . Let f̂n be the least-squares estimator

f̂n ∈ argmin
f∈F

1

n

n∑
i=1

(Yi − f(xi))
2.

Show that for any ε > 0, there exists a constant cε > 0 that depends on ε and d, such that∥∥∥f̂n − f∗
∥∥∥
n
≤ cεn

− 1
2
+ε,

with high probability.
[Remark: Indeed, you can prove a sharper result with logarithmic factors, but we are fine with
this near-optimal rate here.]
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Q3: another density estimation method

Let F be a class of densities on the domain X. For simplicity, let us assume that F is finite.
Given i.i.d. samples X1, X2, · · · , Xn from an unknown density p∗, the goal is to estimate p∗.
In doing so, we define the set

A := {A ⊆ X | A = {x ∈ X | p(x) > q(x)}, for some p, q ∈ F} .

We can then define the estimator p̂n as

p̂n ∈ argmin
p∈F

sup
A∈A

∣∣∣∣∣ 1n
n∑

i=1

1Xi∈A −
∫
A
p(x)dx

∣∣∣∣∣ .
Show that with high probability, we have

dTV(p̂n, p
∗) ≤ 3 inf

p∈F
dTV(p, p

∗) + c

√
log |F|

n
.

[Hint: an equivalent definition of the total variation distance is dTV(p, q) = supA⊆X |
∫
A p(x)dx−∫

A q(x)dx|, where the supremum is attained at the set A = {x ∈ X | p(x) > q(x)}.]
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Q4: estimating a probability transition kernel

Let (Xi, Yi)
n
i=1 be i.i.d. samples from a joint distribution over [0, 1]2, with density p∗(x, y).

The goal is to estimate the conditional density p∗(y | x). We impose the following assumptions
on the joint density p∗.

• (marginal) The marginal density p∗(x) satisfies 0 < pmin ≤ p∗(x) < pmax < +∞ for all
x ∈ [0, 1].

• (smoothness) The conditional density p∗(y | x) is Lipschitz in x and second-order smooth
in y, i.e., there exist constants L1, L2 > 0 such that for any x, y ∈ [0, 1],

|∂xp∗(y | x)| ≤ L1, |∂2
yp

∗(y | x)| ≤ L2.

Construct an estimator p̂n(y | x) and prove its convergence rate under the integrated squared
error loss

R(p̂n; p
∗) := E

[
dTV

(
p̂n(· | X), p∗(· | X)

)2]
.

Make the convergence rate as sharp as possible, but you do not need to prove minimax lower
bounds. You can also see the constants pmin, pmax, L1, L2 as universal constants that do not
depend on n.
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