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STA355: Theory of Statistical Practice Final Exam

Question 1. [24 points, 3 points each] Mark each statement with T (true) or F
(false). No justification required.

(1) Let X1, . . . , Xn be i.i.d. samples from a distribution with mean µ = 0 and

variance σ2 = 1. Let g(x) := |x|. Then
√
n(g
(
1
n

∑n
i=1Xi

)
− g(0))

d−→ N (0, 1).
Answer: F

(2) If θ̂
(1)
n and θ̂

(2)
n are both consistent estimators of a scalar parameter θ, then

max(θ̂
(1)
n , θ̂

(2)
n ) is also a consistent estimator of θ. Answer: T

(3) If θ̂
(1)
n and θ̂

(2)
n are both unbiased estimators of a scalar parameter θ, then

max(θ̂
(1)
n , θ̂

(2)
n ) is also a unbiased estimator of θ. Answer: F

(4) Consider X1, X2, · · · , Xn
i.i.d.∼ N (0, σ2), where σ2 is unknown. Then the statis-

tic T (X1, . . . , Xn) =
∑n

i=1X
2
i is sufficient for σ2. Answer:

T

(5) Consider a collection of hypothesis testing problems H0,i vs. H1,i, i =
1, 2, . . . ,m. Suppose that for each i, ϕi is a level-α test for H0,i vs. H1,i.
Then the test ϕ = max1≤i≤m ϕi is a level-α test for the global null hypothesis
H0 :

⋂m
i=1H0,i vs. the global alternative hypothesis H1 :

⋃m
i=1H1,i. Answer:

F

(6) Consider a hypothesis testing problem H0 vs. H1. Let p be the p-value of a
test computed based on the observed data. If we reject H0 whenever p ≤ α,
then the resulting test is a level-α test. Answer: T

(7) If θ̂ is a minimax optimal estimator for a parameter θ under squared error loss,
then θ̂ is admissible. Answer: F

(8) K-fold cross validation provides an exactly unbiased estimate of the prediction
loss of a regression model trained on the entire dataset. Answer: F
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Question 2. [14 points] Empirical estimator and bootstrap

Part (a). [6 points] Given samples X1, X2, . . . , Xn
i.i.d.∼ Ber(p) for some p ∈ (0, 1),

let p̂n := 1
n

∑n
i=1Xi. Let g : R → R be a continuously differentiable function,

satisfying g′(p) ̸= 0. Find the asymptotic distribution of
√
n(g(p̂n)− g(p)).

Answer: By the Delta method, since g is continuously differentiable with

g′(p) ̸= 0, and
√
n(p̂n − p)

d−→ N (0, p(1− p)), we have:

√
n(g(p̂n)− g(p))

d−→ N
(
0, g′(p)2p(1− p)

)
.

Rubrics: 2 points for deriving the asymptotic distribution of p̂n − p.
3 points for correctly invoking Delta method
1 point for the final calculation
(if all the intermediate steps are correct but the final answer is wrong, give 5

points)
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Part (b). [8 points] Continuing the discussion in part (a), now that we want to
use the bootstrap method to approximate the distribution of

√
n(g(p̂n) − g(p)).

Conditionally on the observed data X1, X2, . . . , Xn, find the asymptotic distribution
of the bootstrap quantity

√
n(g(p̂∗n) − g(p̂n)), where p̂∗n := 1

n

∑n
i=1X

∗
i . Does the

bootstrap provide a valid approximation of the distribution of
√
n(g(p̂n) − g(p))?

Justify your answer.
Answer: Conditionally on the observed data X1, . . . , Xn, the bootstrap samples

X∗
1 , . . . , X

∗
n are i.i.d. samples from Ber(p̂n), where p̂n = 1

n

∑n
i=1Xi. Therefore, we

have

np̂∗n =

n∑
i=1

X∗
i ∼ Binom(n, p̂n), conditionally.

By the Central Limit Theorem for Binomial distribution, we have

√
n(p̂∗n − p̂n) | X1, . . . , Xn

d−→ N (0, p̂n(1− p̂n))

By the Delta method:

√
n(g(p̂∗n)− g(p̂n)) | X1, . . . , Xn

d−→ N (0, g′(p̂n)
2p̂n(1− p̂n))

Since p̂n
p−→ p and g′ is continuous, we have g′(p̂n)

2p̂n(1− p̂n)
p−→ g′(p)2p(1− p).

Therefore, the bootstrap does provide a valid approximation: the conditional
distribution of

√
n(g(p̂∗n)−g(p̂n)) given the data converges in probability to the same

limiting distribution N (0, g′(p)2p(1 − p)) as the distribution of
√
n(g(p̂n) − g(p))

from part (a).
Rubrics: 4 points for correctly identifying the conditionally distribution of p̂∗n.
2 points for applying the Delta method to get the asymptotic distribution of√

n(g(p̂∗n)− g(p̂n)).
2 points for justifying the validity of the bootstrap approximation.
Any other correct solution using different approaches can also get full marks.
If you only mention bootstrap is valid without justification (or just mentioning

the terminology Hadamard differentiability, without verifying it), give 2 points.
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Question 3. [14 poitns] MLE and parametric estimation.

Part (a). [6 points] Consider the class of Laplace distributions with density func-
tions

pθ(x) =
1

2
e−|x−θ|, x ∈ R.

Let X1, X2, . . . , Xn
i.i.d.∼ pθ∗ for some unknown parameter θ∗ ∈ [−1, 1]. Let θ̂n be the

maximum likelihood estimator (MLE) of θ∗. Show that θ̂n is consistent.
Answer:

Solution I Define the sample-level and population-level log-likelihood functions as

ℓ(θ,Xi) := log pθ(Xi) = log
1

2
− |Xi − θ|,

L(θ) := Eθ∗ [ℓ(θ,X)] =

∫ ∞

−∞
pθ∗(x)ℓ(θ, x)dx.

Since ℓ is continuous in θ and the model is identifiable (i.e., pθ ≠ pθ′ for θ ̸= θ′), the
function L is uniquely maximized at θ = θ∗, and L is continuous in θ. Furthermore,
we note that

E
[

sup
θ∈[−1,1]

|ℓ(θ,X)|
]
≤ log 2 + Eθ∗ [|X|+ 1] < ∞.

So by the uniform law of large numbers, we have

sup
θ∈[−1,1]

∣∣∣ 1
n

n∑
i=1

ℓ(θ,Xi)− L(θ)
∣∣∣ p−→ 0.

Combining the above results, we obtain the consistency of the MLE θ̂n for θ∗.
Rubrics: 2 points for correctly defining the log-likelihood functions.

4 points for verifying the conditions needed for applying the uniform law of large
numbers and concluding consistency of MLE.

Another method using the property of sample median can also get full marks. If
you use that method, give 3 points for showing MLE is the sample median, and 3
points for showing the sample median is consistent.
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Part (b). [8 points] Let X1, X2, . . . , Xn be i.i.d. random variables that take positive
values, and let each Yi follow

Yi | Xi ∼ Poisson(θ∗Xi),

where θ∗ > 0 is an unknown parameter. The probability mass function of Poisson(λ)
distribution is given by

pk =
λke−λ

k!
, k = 0, 1, 2, . . .

Find the form of the log-likelihood function ℓ(θ;X1, . . . , Xn, Y1, . . . , Yn) based on the
observed data (Xi, Yi), i = 1, 2, . . . , n. Compute the asymptotic distribution of the
MLE θ̂n for θ∗.

Answer: The log-likelihood function for each sample is

ℓ(θ;Xi, Yi) = log pθ(Yi | Xi) = Yi log(θXi)− θXi − log(Yi!).

So the overall log-likelihood function is

ℓ(θ;X1, . . . , Xn, Y1, . . . , Yn) =
n∑

i=1

Yi log θ +
n∑

i=1

Yi logXi − θ
n∑

i=1

Xi −
n∑

i=1

log(Yi!).

Here we provide two methods to compute the asymptotic distribution of the MLE.

Method I: using Fisher information The score function is:

∂ℓ(θ;Xi, Yi)

∂θ
=

Yi
θ

−Xi.

So the Fisher information for one sample is:

I(θ) = E

[(
∂ℓ(θ;Xi, Yi)

∂θ

)2
]
= E

[
Var

(
Yi
θ

| Xi

)]
=

E[Xi]

θ
.

By the asymptotic normality of MLE

√
n(θ̂n − θ∗)

d−→ N
(
0,

θ∗

E[Xi]

)
.

Method II: using the explicit form of MLE To find the MLE, we take the
derivative with respect to θ and set it to zero:

∂ℓ

∂θ
(θ;X1, . . . , Xn, Y1, . . . , Yn) =

1

θ

n∑
i=1

Yi −
n∑

i=1

Xi = 0.
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Therefore, the MLE is:

θ̂n =

∑n
i=1 Yi∑n
i=1Xi

.

For the asymptotic distribution, note that Eθ∗ [Yi | Xi] = θ∗Xi, so E[Yi] = θ∗E[Xi].
By the law of large numbers, we have

1

n

n∑
i=1

Xi
p−→ E[Xi]

By central limit theorem, we have

1√
n

n∑
i=1

(Yi − θ∗Xi)
d−→ N (0, var(Y1 − θ∗X1)) = N (0, θ∗E[Xi]) .

Using Slutsky’s theorem, we obtain

√
n(θ̂n − θ∗) =

1√
n

∑n
i=1(Yi − θ∗Xi)

1
n

∑n
i=1Xi

d−→ N
(
0,

θ∗

E[Xi]

)
.

Rubrics: 3 points for the expression of log-likelihood function.
4 points for using the correct methods to derive the asymptotic distribution.
1 points for calculating the final answer correctly.
Intermdiate steps will also be given partial credits.
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Question 4. [14 points] Hypothesis testing

Part (a). [6 points] Consider two independent samplesX1, X2, . . . , Xn
i.i.d.∼ N (θX , 1)

and Y1, Y2, . . . , Yn
i.i.d.∼ N (θY , 1), where θX , θY ∈ R are unknown parameters. Con-

sider the hypothesis testing problem H0 : θX = θY vs. H1 : θX ̸= θY . Construct an
exact level-α test for this problem using what you have learned in this course.

[Note: the answer is not unique. You will get full marks as long as your test is valid
and well justified.]

Answer: The solution is not unique. Here we provide two possible solutions.

Solution I: Wald’s Test Let X = 1
n

∑n
i=1Xi and Y = 1

n

∑n
i=1 Yi be the sample

means. Under H0 : θX = θY , we have X − Y ∼ N (0, 2/n).
The test statistic is:

Wn =
X − Y√

2/n
∼ N (0, 1) under H0.

We reject H0 if |Wn| > zα/2, where zα/2 is the upper α/2 quantile of the standard
normal distribution. This is an exact level-α test.

Solution II: Permutation Test Pool the two samples to get Z1, Z2, . . . , Z2n (first
n are Xi’s, next n are Yi’s). Compute the test statistic Tobs = |X − Y |.

For each permutation π of {1, 2, . . . , 2n}, split the permuted data into two groups
of size n and compute the test statistic Tπ.

The p-value is:

p-value =
1

(2n)!

∑
π

1Tπ≥Tobs
.

(Computationally, we can approximate this by randomly sampling permutations.)
We reject H0 if p-value ≤ α. This test is exact and does not require normality

assumptions.
Rubrics: Any valid test construction will get full marks.
3 points for correctly defining the test statistic.
3 points for justifying the level-α property of the test.
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Part (b). [8 points] Given i.i.d. samples from a one-dimensional Gaussian mixture
model

X1, X2, . . . , Xn
i.i.d.∼ 1

2
N (−θ∗, 1) +

1

2
N (θ∗, 1),

where θ∗ ∈ R is an unknown parameter. Consider the hypothesis testing problem
H0 : θ

∗ = 0 vs. H1 : |θ∗| ≥ ε. Consider the test statistic

Tn =
1

n

n∑
i=1

X2
i .

Show that there exists a constant c > 0, such that when ε ≥ cn−1/4, there exists a
test based on Tn that makes the sum of type-I and type-II errors less than 1/4.

[Hint: for Z ∼ N (0, 1), we have E[Z4] = 3. You may use this fact to compute the
mean and variance of Tn under both null and alternative hypotheses.]
[Note: you do not need to find the optimal constant c.]

Answer: Under H0 : θ
∗ = 0, we have

E[Tn] = E[X2
1 ] = 1,

var(Tn) =
1

n
var(X2

1 ) =
1

n
(E[X4

1 ]− (E[X2
1 ])

2) =
1

n
(3− 1) =

2

n
.

Under θ∗ ̸= 0, we have

E[Tn] = E[X2
1 ] = 1 + (θ∗)2,

var(Tn) =
1

n
var(X2

1 ) =
1

n
(E[X4

1 ]− (E[X2
1 ])

2) =
1

n
(2 + 4(θ∗)2).

We construct the test that rejects H0 if Tn > 1 + ε2

2 . By Chebyshev’s inequality,
under H0, we have

PH0

(
Tn > 1 +

ε2

2

)
≤ PH0

(
|Tn − 1| > ε2

2

)
≤ 4 var(Tn)

ε4
=

8

nε4
.

Under H1, we have

Pθ∗

(
Tn ≤ 1 +

ε2

2

)
≤ Pθ∗

(
|Tn − (1 + (θ∗)2)| ≥ (θ∗)2

2

)
≤ 4 var(Tn)

(θ∗)4
≤ 8 + 16ε2

nε4
.

Choosing ε ≥ 16n−1/4, we can ensure that both type-I and type-II errors are less
than 1/8. Therefore, the sum of type-I and type-II errors is less than 1/4.

Rubrics: 4 points for correctly computing upper bound on type-I error.
4 points for correctly computing upper bound on type-II error.
For each case, computing mean/variance correctly gets 2 points.
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Question 5. [10 points] Let X1, X2, . . . , Xn
i.i.d.∼ Uniform

(
[θ−1/2, θ+1/2]

)
, where

θ ∈ R is an unknown parameter. Consider the improper prior density function
π(θ) = 1 for all θ ∈ R. Find the posterior distribution of θ given the observed data
X1, X2, . . . , Xn. Find the Bayes estimator of θ under squared error loss.

Answer: The likelihood function is:

L(θ;X1, . . . , Xn) =

n∏
i=1

pθ(Xi) =

n∏
i=1

1[θ−1/2,θ+1/2](Xi) = 1[maxi Xi−1/2,mini Xi+1/2](θ).

The posterior distribution is proportional to the product of the prior and the
likelihood:

p(θ | X1, . . . , Xn) ∝ π(θ)L(θ;X1, . . . , Xn) = 1[maxi Xi−1/2,mini Xi+1/2](θ).

Therefore, the posterior distribution of θ given the data is a uniform distribution on
the interval [maxiXi − 1/2,miniXi + 1/2].

The Bayes estimator under squared error loss is the posterior mean:

θ̂Bayes = E[θ | X1, . . . , Xn] =
maxiXi − 1/2 + miniXi + 1/2

2
=

maxiXi +miniXi

2
.

Rubrics: 2 points for deriving the likelihood function correctly.
3 points for deriving the posterior distribution correctly using likelihood and

prior.
5 points for computing the Bayes estimator correctly.
Intermdiate steps will also be given partial credits.
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Question 6. [14 points] Linear regression

Part (a). [8 points] Suppose we observe i.i.d. data (Xi, Yi), for i = 1, 2, . . . , n.
Assume that

Yi = X⊤
i β∗ + εi, where εi | Xi ∼ N (0, σ2(Xi)),

where σ2(x) is a known function of x. Given a weight function w : Rd → R+, consider
the weighted least-squares estimator

β̂(w)
n = arg min

β∈Rd

n∑
i=1

w(Xi)(Yi −X⊤
i β)2

Find the asymptotic distribution of
√
n(β̂

(w)
n − β∗). Express the asymptotic variance

in terms of w(·), σ2(·), and the distribution of Xi.
[If you solve the one-dimensional case d = 1, you will get 75 % of the marks.]

Answer: The weighted least-squares estimator can be expressed as:

β̂(w)
n =

(
n∑

i=1

w(Xi)XiX
⊤
i

)−1 n∑
i=1

w(Xi)XiYi.

Substituting Yi = X⊤
i β∗ + εi, we have:

β̂(w)
n − β∗ =

(
n∑

i=1

w(Xi)XiX
⊤
i

)−1 n∑
i=1

w(Xi)Xiεi.

By the law of large numbers, we have:

1

n

n∑
i=1

w(Xi)XiX
⊤
i

p−→ E[w(X)XX⊤] =: Aw,

1√
n

n∑
i=1

w(Xi)Xiεi
d−→ N (0, Bw),

where

Bw = E[w(X)2XX⊤σ2(X)].

Therefore, by Slutsky’s theorem, we have:

√
n(β̂(w)

n − β∗)
d−→ N (0, A−1

w BwA
−1
w ).

Rubrics: 4 points for deriving the expression of β̂
(w)
n − β∗ correctly.

4 points for applying the law of large numbers and central limit theorem correctly
to derive the asymptotic distribution.

If you only solve the one-dimensional case, give 3 points for deriving the expression
and 3 points for applying LLN and CLT.
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Part (b). [6 points] Find the weight function w(·) that minimizes the asymptotic

variance of β̂
(w)
n .

[Hint: try to make an educated guess based on the maximal likelihood estimator,
and then verify the guess using Cauchy–Schwarz inequality.]

Answer: The MLE under the heteroscedastic model is given by:

β̂(MLE)
n = arg min

β∈Rd

n∑
i=1

(Yi −X⊤
i β)2

σ2(Xi)
.

This corresponds to choosing the weight function:

w(X) =
1

σ2(X)
.

To verify that this choice minimizes the asymptotic variance, we note that for any
weight function w(X), the asymptotic variance is given by:

A−1
w BwA

−1
w =

(
E[w(X)XX⊤]

)−1
E[w(X)2XX⊤σ2(X)]

(
E[w(X)XX⊤]

)−1
.

By the Cauchy–Schwarz inequality, for any unit vector u ∈ Sd−1, we have:

u⊤E[w(X)2XX⊤σ2(X)]u ≥
(
u⊤E[w(X)XX⊤]u

)2
E[σ2(X)]

.

Equality holds when w(X) = c/σ2(X) for some constant c > 0. Therefore, the choice

w(X) = 1/σ2(X) minimizes the asymptotic variance of β̂
(w)
n .

Rubrics: 3 points for identifying the MLE weight function.
3 points for verifying the optimality using Cauchy–Schwarz inequality.
You will still get full credit if you only derive in the one-dimensional case.
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Question 7. [10 points] Let X1, X2, . . . , Xn
i.i.d.∼ p, where p is a density function

supported on [0, 1]. Suppose that supx p(x) ≤ pmax for some pmax > 0, and that p
satisfies the Hölder condition

|p(x)− p(y)| ≤ L
√
|x− y|, for all x, y ∈ [0, 1],

for some constants L > 0. Write down the kernel density estimator p̂n with a
bandwidth h > 0 and a kernel function K : R → R. Now we want to estimate p(x0)
for some fixed x0 ∈ (0, 1). With your choice of the kernel function K, find the opti-
mal bandwidth h to achieve optimal rate for mean squared error E

[
|p̂n(x0)−p(x0)|2

]
.

[Note: you can see (L, pmax) as a fixed constant. You only need to find the rate in
terms of n, and you do not need to track the constant factors. ]

Answer: The kernel density estimator is defined as:

p̂n(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
.

To estimate p(x0), we analyze the mean squared error (MSE):

E
[
|p̂n(x0)− p(x0)|2

]
= var(p̂n(x0)) + (E[p̂n(x0)]− p(x0))

2 .

The variance term is:

var(p̂n(x0)) =
1

nh2
var

(
K

(
x0 −X1

h

))
≤ pmax

nh

∫
K(u)2du.

The bias term is:

E[p̂n(x0)]− p(x0) =

∫
K(u)p(x0 − hu)du− p(x0) =

∫
K(u)(p(x0 − hu)− p(x0))du.

Using the Hölder condition, we have:

|p(x0 − hu)− p(x0)| ≤ L
√
|hu| = Lh1/2|u|1/2.

Therefore, the bias is bounded by:

|E[p̂n(x0)]− p(x0)| ≤ Lh1/2
∫

|K(u)||u|1/2du.

Choosing the kernel function K(u) := 1
21[−1,1](u), combining the variance and bias

terms, we have:

E
[
|p̂n(x0)− p(x0)|2

]
≤ C1

nh
+ C2h,
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for some constants C1, C2 > 0 depending on pmax, L. To minimize the MSE, we
choose optimal bandwidth is hn = c0n

−1/2, for some constant c0 > 0. This gives the
optimal rate for MSE as:

E
[
|p̂n(x0)− p(x0)|2

]
≤ Cn−1/2,

for some constant C > 0.
Rubrics: 4 points for deriving the variance term correctly.
4 points for deriving the bias term correctly.
2 points for finding the optimal bandwidth and the corresponding MSE rate.
You do not need to track constant factors, so minor mistakes in constants will

not affect the score.
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