STA447/2006: Midterm Exam#2

Instructor: Wenlong Mou

March 22nd, 2024

Student name: _____

Student ID: _____

Student signature: _____

This exam contains 10 pages.

Total marks: 100 pts

Time Allowed: 105 minutes

Question 1. [30 points, 3 points for each question] Mark each of the following statements with T (true) or F (false). *No justification is required.* Your grade will be solely based on your true-or-false choices.

- T (1) For a discrete-time stochastic process $(X_n)_{n=0,1,2,\cdots}$, if T_1 and T_2 are both stopping times, then $T_1 \cdot T_2$ is a stopping time.
- F (2) For a Brownian motion $(B_t)_{t\geq 0}$, if T_1 and T_2 are both stopping times, then $T_1 \cdot T_2$ is a stopping time.
- F (3) Let $(X_n)_{n=0,1,2\cdots}$ be a discrete-time martingale, for any stopping time T such that $\mathbb{P}(T < +\infty) = 1$, we have $\mathbb{E}[X_T] = \mathbb{E}[X_0]$.
- **F** (4) Let $(X_n)_{n=0,1,2\cdots}$ be a discrete-time martingale, if we have

$$\lim_{K \to +\infty} \mathbb{E}[|X_n| \mathbf{1}_{|X_n| \ge K}] = 0, \quad \text{for any } n \ge 0$$

then the process $(X_n)_{n\geq 0}$ is uniformly integrable.

- **F** (5) Let $(X_n)_{n=0,1,2\cdots}$ be a discrete-time irreducible and aperiodic Markov chain on a countably infinite state space $S \subseteq \mathbb{R}$. If $(X_n)_{n\geq 0}$ is also a non-negative martingale that converges some X_{∞} almost surely, then the Markov chain $(X_n)_{n\geq 0}$ has a stationary distribution π , and $X_{\infty} \sim \pi$.
- T (6) If $(X_t)_{t\geq 0}$ is a martingale and T is a stopping time, then $(X_{t\wedge T})_{t\geq 0}$ is also a martingale.
- T (7) Let $(B_t)_{t\geq 0}$ be a Brownian motion. Let $T := \inf \{t > 0 : B_t = 0\}$. We have T = 0 with probability 1.
- **F** (8) Let $(B_t)_{t\geq 0}$ be a Brownian motion and let f be a continuously differentiable function, we have $\mathbb{E}[f(B_t)] = \mathbb{E}\left[\int_0^t f'(B_s) dB_s\right]$.
- T (9) Let $(X_t)_{t\geq 0}$ be a two-dimensional standard Brownian motion. With probability 1, for any t > 0, there exists t' > t, such that $\left\| X_{t'} \begin{bmatrix} 100\\100 \end{bmatrix} \right\|_2 \le 10^{-2}$.
- **F** (10) If $(B_t)_{t\geq 0}$ is a Brownian motion, then $\int_0^t B_s^2 dB_s$ is normally distributed.

Midterm #2

Question 2. [9 pts] Give an example of a martingale $(X_t)_{t\geq 0}$ such that

$$\sup_{t \ge 0} \mathbb{E}[|X_t|] \le C \quad \text{for some constant } C < +\infty$$

and $X_t \to X_\infty$ almost surely as $t \to +\infty$, but we have $\mathbb{E}[X_0] \neq \mathbb{E}[X_\infty]$.

Any valid example with a complete justification deserves full points. A valid example with incomplete or problematic justification gets partial credits (50% -- 90%, depending on the nature of the mistake).

Example:

Let
$$(S_n)_{n \ge 0}$$
 be a $[-dimensional simple random
well starting from $S_0 =]$.
Let $T := min[t \ge 0:St = 0]$, which is a stopping time
 $(S_n)_{n \ge 0} \ge martingale \implies (X_n := S_{n \ge 0})_{n \ge 0}$ is a martingale.
 $X_n \ge 0$, $S_0 \qquad \sup_{n \ge 0} \mathbb{E}[X_n] = \sup_{n \ge 0} \mathbb{E}[X_n] = \mathbb{E}[X_0] =]$
By reasoness of SRW , $\mathbb{P}[T < too] =]$,
and therefore $X_n \rightarrow 0$ as.
 $S_0 \qquad 1 = \mathbb{E}[X_0] \neq \mathbb{E}[X_0] = 0$. Page 3$

Question 3. [20 pts] Consider a box N balls with two colours (red and blue). At each round, we draw with replacement from the box for N times independently, and replace the balls in the box with the composition of these random draws. Let X_t be the number of red balls in the *t*-th round, the process is defined by

$$X_{t+1} = \sum_{j=1}^{N} Z_{t+1,j}, \quad \text{where } Z_{t+1,j} | X_t \stackrel{\text{i.i.d.}}{\sim} \operatorname{Ber}(X_t/N).$$

Let $X_0 = x \in \{1, 2, \dots, N-1\}$ fixed

(1) [10 pts]. Show that $(X_t)_{t\geq 0}$ is a martingale, and compute the probability

$$\mathbb{P}\Big(\lim_{t \to +\infty} X_t = 0\Big).$$

Mor tingale:
$$\mathbb{E}\left[X_{ntri} \mid \overline{T_{n}}\right] = \sum_{j=1}^{N} \mathbb{E}\left[\overline{Z_{ntri, y}} \mid \overline{T_{n}}\right] = N \cdot \frac{X_{n}}{N} = X_{n}$$
.
 $(X_{n})_{n \geq 0}$ is a bounded martingale, so dere exists X_{n0}
 S_{1} $X_{n} \rightarrow X_{00}$ a.s.
By definition, X_{n} takes integer value. If X_{n} stops fluceworthy,
it must be rowing at 0 on N .
 $(X_{n})_{n \geq 0}$ uniformly bounded \Rightarrow uniformly integrable
 $(X_{n})_{n \geq 0}$ $(X_{n})_{n \geq 0} = \mathbb{E}\left[X_{n0}\right] = N \cdot \mathbb{P}(X_{n0} = N) + 0 \cdot \mathbb{P}(X_{n0} = 0)$
 $Nere fore, \quad X = \mathbb{E}\left[X_{0}\right] = \mathbb{E}\left[X_{n0}\right] = N \cdot \mathbb{P}(X_{n0} = N) + 0 \cdot \mathbb{P}(X_{n0} = 0)$

A correct answer without rigorous justification gets 9 point.

An argument of martingale convergence and/or uniform integrability without a Page 4 correct answer gets 6 points.

Only showing the martingale property gets 4 points.

(2) [10 pts]. Show that for any $t \ge 0$ and $x \in \{1, 2, \dots, N-1\},\$

$$\mathbb{P}_x \left(1 \le X_t \le N - 1 \right) \le x(N - x) \cdot \left(1 - \frac{1}{N} \right)^t.$$

[Hint: study the process $H_t := X_t(N - X_t)$.]

$$\mathbb{E} \left[\mathbb{H}_{tm} \mid \mathbb{F}_{t} \right] = N \cdot X_{t} - X_{t} - N \cdot \frac{X_{t}}{N} \left(\mathbb{I} - \frac{X_{t}}{N} \right)$$

$$= \left(\mathbb{I} - \frac{1}{N} \right) \quad X_{t} - \left(N - \frac{1}{N} \right) = \left(\mathbb{I} - \frac{1}{N} \right) \mathbb{H}_{t}$$

$$S_{0} \qquad \mathbb{E} \left[\mathbb{H}_{t} \right] = \left(\mathbb{I} - \frac{1}{N} \right)^{t} \quad \mathbb{H}_{0} = \left(\mathbb{I} - \frac{1}{N} \right)^{t} \times (N - N)$$

By Markov mequatry,

$$P(1 \leq X_{T} \leq N^{-1}) = P(H_{t} \geq I) \leq IE[H_{t}] = (I - h)^{t} \times (N - x).$$

7 points if the solution obtains the recursive relation for H_t correctly without establishing the final bound or applying Markov inequality.

Question 4. [25 pts] Let $(B_t)_{t\geq 0}$ be a Brownian motion.

(1) [5 pts]. Let λ be a deterministic constant. If the process $M_t := \exp(\lambda B_t) - 1 - \int_0^t f(B_s) ds$ is a martingale. Write down the function form of f, and express M_t in the form of an Itô integral.

$$f(x) = \frac{\lambda^2}{2} e^{\lambda x}$$

$$M_t = \int_0^t \lambda e^{\lambda B_s} dB_s.$$

3 pts if only one of them is computed correctly.

(2) [10 pts]. Compute the quantity [Hint: reflection principle]

$$\mathbb{P}\Big\{\max_{0\leq t\leq 1}B_t\geq 1, \text{ and } B_{\mathbf{p}}\leq 0\Big\}.$$

(It is fine to express your solution in the form of an integral. You don't need to give a numerical answer.)

Let
$$\forall x = \inf \{ \forall \ge 0, B_{t} = 1 \}$$

 $P(\max x, B_{t} \ge 1, B_{1} \le 0)$
 $= P(\forall \le 1, B_{1} \le 0)$
 $= P(\forall \le 1) \cdot P(B_{1} \le 0 | \forall \le 1),$
By strong Merbow privery and symmetry of Brownian model
 $P(B_{1} \le 0 | \forall \le 1) = P(B_{1} \ge 2 | \forall \le 1)$
 $x^{2} = P(\forall \le 1 \le 1) \cdot P(B_{1} \ge 2 | \forall \le 1)$
 $x = P(\forall \le 1) \cdot P(B_{1} \ge 2 | \forall \le 1)$
 $= P(\forall \le 1) \cdot P(B_{1} \ge 2 | \forall \le 1)$
 $= P(\forall \le 1) \cdot P(B_{1} \ge 2 | \forall \le 1)$
 $= P(\forall \le 1) \cdot P(B_{1} \ge 2 | \forall \le 1)$

Full points if doing the reflection correctly but calculating the integral wrong, or writing in the form of normal cdf, etc.

Page 7

3 points if the solution assumes independence of the max and B_1, and use reflection principle to compute the probability of max larger than 1, and take the product.

(3) [10 pts]. Let $\tau := \inf \{t \ge 0 : |B_t| \ge 1\}$. Compute $\operatorname{var}(\tau)$. [Hint: construct a martingle from the process $(B_t^4 - 6tB_t^2)_{t\ge 0}$]

Z= = B+ - 6+ B+

By Its,

$$d Z_{t} = \left(4B_{0}^{3} dB_{t} + 6B_{t}^{2} dt\right) - \left(6B_{t}^{2} dt + 12tB_{t} dB_{t} + 6t dt\right)$$

$$= \left(4B_{0}^{3} - 12tB_{t}\right) dB_{t} - 6t dt$$
So $Z_{t} - \int_{0}^{t} 6s ds = Z_{t} - 3t^{2} = \int_{0}^{t} \left(4B_{0}^{3} - 12sB_{s}\right) dB_{s}$
is a martingale.

$$(Exponentially decaying tall of I has been escablished in class)$$
By $OSI: E[Z_{T} - 3v^{2}] = E[Z_{0} - 3 \cdot 0^{2}] = 0$

$$E[Z_{T} - 3t^{2}] = 1 - 6E[v] + 3E[v^{2}]$$

$$E[t] = 1 \quad by \quad applying \quad OSIT to the martingale (B_{0}^{2} - t) to to (Abready shown in class/text)$$
So $E[v^{2}] = \frac{5}{3}$, and $Var(T) = \frac{2}{3}$.

Page 8

9 points for applying the workflow correctly but calculating the final answer wrong.6 points for successfully constructing the martingale.Full points if showing the correct answer using any other method.

Question 5. [16 pts] Prove the following statements.

(1) [8 pts]. Let $(B_t)_{t\geq 0}$ be a standard Brownian motion. Suppose that the process $(X_t)_{t\geq 0}$ starts from $X_0 = x$, satisfying that

$$dX_t = -X_t dt + dB_t.$$

Prove that X_t follows a normal distribution (for any t > 0), and compute its mean and variance.

Let
$$Z_{t} = e^{t}X_{t}$$
, we have
 $dZ_{t} = e^{t}dX_{t} + e^{t}X_{t}dt = -e^{t}X_{t}dt + e^{t}dB_{t} + e^{t}X_{t}dt$
 $= e^{t}dB_{t}$
 $Z_{t} = \chi + \int_{0}^{t} e^{s}dB_{s}$

Applying definition of stochastic integration, Z_t is the limit of a sequence of normal random variables, with shared mean of converging variance. Its normality can be established using cdf or characteristic functions (see additional exercises of week 9/10 for details).

$$\begin{split} & [E[\mathcal{Z}_{t}] = [E[\mathcal{Z}_{0}] = x. \\ & \text{var}(\mathcal{Z}_{t}) = \text{var}\left(\int_{0}^{t} e^{s} dB_{s}\right) = \int_{0}^{t} e^{2s} ds = \frac{1}{2}(e^{2^{t}}-1). \\ & \text{So} \qquad [E[X_{t}]] = e^{-t} x \\ & \text{var}(X_{t}) = \frac{1}{2}(1-e^{-2t}). \end{split}$$

4 points if computing one of the mean/variance correctly.7 points if computing both correctly without showing normality.5 points if showing normality correctly.

Page 9

(2) [8 pts]. Let $(X_n)_{n\geq 0}$ be a discrete-time stochastic process satisfying $\mathbb{E}[|X_n|] < +\infty$ and $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \leq X_n$ for any n (such a process is called a super-martingale). Suppose that $X_n \geq 0$ almost surely for each n. Prove that

$$\lim_{n \to +\infty} X_n = X_{\infty} \quad \text{almost surely,}$$

for some random variable X_{∞} .

Up-crossing arguments from the martingale convergence theorem.

Full pts if showing the upcrossing inequality correctly
4 pts if constructing the relevant beeting process and
upcrossing counts.
For
$$0 < a < b < + \infty$$
, $def the$
For $0 < a < b < + \infty$, $def the$
 $U_n([a,b]) := # of up crosslag [a,b]$ up to thre n .
 $U_n([b,b]) := # of up crosslag [a,b]$ up to the n .
 $U_n([b,b]) := # of up crosslag [a,b]$ up to the n .
 $U_n([b,b]) := # of up crosslag [a,b]$ up to the n .
 $U_n([b,b]) := # of up crosslag [a,b]$ up to the n .
 $U_n([b,b]) := # of up crosslag [a,b]$ up to the n .
 $U_n([b,b]) := # of up crosslag [a,b]$ up to the n .
 $U_n([b,b]) := # of up crosslag [a,b]$ up to the n .
 $U_n([b,b]] := # of up crosslag [a,b]$ up to the n .
 $U_n([b,b]] := # of up crosslag [a,b]$ up to the n .
 $U_n([b,b]] := # of up crosslag [a,b]$ up to the n .
 $U_n([b,b]] := # of up crosslag [a,b]$ up to the n .
 $U_n([b,b]] := # of up crosslag [a,b]$ up to the same arguments us before.