Practice Questions

April 16, 2024

Question 1. Consider a Markov chain with state space {1,2,3,4,5}, with transition matrix
given by
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Compute f3o.

Question 2. Consider a Markov chain on the state space S = {0,1,2,---}. For any i > 1,
we define the transition from the state ¢ as
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and p; ; = 0 for j ¢ {i — 1,7+ 1}. Show that the Markov chain is null recurrent.

Question 3. Let (B;:t > 0) be a standard Brownian motion.

e If the process M; := sin(tB;) — fg f(s, Bs)ds is a martingale. Write down the function
form of f, and express M; in the form of an Itd integral.

e Find the probability ]P’(Bl > —1 and maxg<i<1 M; > 1).

e Apply Itd’s formula to the process (e)‘Bt_)‘2t/2) and use it to compute the moment

>0
generating function of 7, where 7 := inf {t >0:|By| = 1}.

Question 4. Let (X¢)¢>0 be a recurrent Markov chain on the state space S, andlet V' : § — R
be a real-valued function, such that

sz‘,jV(j) =V(i), fories.
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e If V is uniformly bounded in [0, 1], show that V is a constant for all states.

e Let the Markov chain be simple symmetric random walk on Z. Find a non-constant and
unbounded function V' such that the above equation is true.



