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STA447/2006: Stochastic Processes Midterm#1

Question 1. [30 points, 3 points for each question] Mark each of the following
statements with T (true) or F (false). No justification is required. Your grade will
be solely based on your true-or-false choices.

(1) Let i, j be a pair of states of a Markov chain P . If fij < 1 and j is recurrent,
then i is transient. Answer: F

(2) There exists an irreducible and transient Markov chain P , such that fij < 1
for any pair i, j ∈ S. Answer: T

(3) Let i, j be a pair of states of a Markov chain P . If i ↔ j, and j is null recurrent,
then i is also null recurrent. Answer: T

(4) If i → k and ℓ → j. When
∑

n≥0 p
(n)
kl < +∞, we have

∑
n≥0 p

(n)
ij < +∞.

Answer: F

(5) There exists a Markov chain that has exactly two stationary distributions.
Answer: F

(6) Let P be an irreducible and recurrent Markov chain. If (Xk)k≥0 and (X ′
k)k≥0 are

two independent Markov chains following P . Then the joint chain Yk = (Xk, X
′
k)

is also irreducible and recurrent. Answer: F

(7) Let i, j be a pair of states of an irreducible Markov chain P . If fij = fji = 1.
Then P is recurrent. Answer: T

(8) Let i, j be a pair of states of a Markov chain P . If i has period 3 and i → j.
Then j also has period 3. Answer: F

(9) Let P be an irreducible Markov chain, and let i be a state. If Ei[Ti] < +∞ (Ti

is the first return time to i), then for any j, the limit

lim
N→+∞

1

N

N−1∑
n=0

p
(n)
ij

exists, and is strictly larger than 0. Answer: T

(10) Let P be an irreducible Markov chain on a finite set S. Then for any i ∈ S,
we have Ei[T

2
i ] < +∞, where Ti is the first return time to i. Answer: T
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STA447/2006: Stochastic Processes Midterm#1

Question 2. [25 pts] Consider a Markov chain on a finite state space S =
{1, 2, 3, 4, 5}, with the transition matrix given by

P =


0 2/3 1/3 0 0
0 0 1/3 1/3 1/3
1/3 0 0 1/3 1/3
0 0 0 1 0
0 0 0 0 1

 .

(1) [5 pts]. Which states are recurrent? Which states are transient? Please explain
your reasoning.

Answer: State 4, 5 are recurrent; and state 1,2,3 are transient.
Rubrics: 1pt for each state.
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STA447/2006: Stochastic Processes Midterm#1

(2) [10 pts]. Compute f15 and E1[N(3)], where N(i) is the number of visits to the
state i. Explain your reasoning. Answer: Clearly, we have f55 = 1, f45 = 0, since
they are absorbing states.

By f -expansion, we have

f15 =
2

3
f25 +

1

3
f35,

f25 =
1

3
f35 +

1

3
,

f35 =
1

3
f15 +

1

3
.

Solving the system of equations yields f15 = f25 = f35 =
1
2 .

For the state 3, we have f43 = f53 = 0, and by f -expansion

f13 =
2

3
f23 +

1

3
,

f23 =
1

3
,

f33 =
1

3
f13.

So we have f13 =
5
9 , f23 =

1
3 , f33 =

5
27 .

Substituting to the formula for expected number of visits, we have

E1[N(3)] =
f13

1− f33
=

15

22
.

Rubrics: Each one of f15 and E1[N(3)] is worth 5 points. You will lose 1 point
(from each) if you get the idea correct but made wrong calculation.

Any other methods with correct answers and complete justification receive full
points.

An incomplete answer may get partial credits, depending on the nature of the
answer.
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STA447/2006: Stochastic Processes Midterm#1

(3) [10 pts]. Let X0 = 1, compute the probability that state 2 and state 5 are
both visited in the trajectory (Xk)k=0,1,2,···.

Answer: Define the event

E :=
{
The chain goes to absorbing state 5

}
,

E ′ :=
{
The chain goes to absorbing state 5 without going through 2

}
.

Clearly, we have E ′ ⊆ E . From Q(2), we know that P1(E ) = 1
2 , and we are interested

in P(E \ E ′) = P1(E )− P1(E ′). So it suffices to compute P1(E ′).
Define the function qi := Pi(E ′). We can write down a system of equations for qi

based on next-step transitions, similar to f -expansion.

q1 =
1

3
q3,

q2 = 0,

q3 =
1

3
q1 +

1

3
.

Solving it yields q1 =
1
8 and q3 =

3
8 . So we conclude

P1(E \ E ′) = P1(E )− P1(E
′) =

3

8
.

Rubrics: 5 points for getting the idea of using expansion based on next-step
transition.

8 points for getting the entire analysis idea correct without the correct answer.
Any other methods with correct answers and complete justification receive full

points.
An incomplete answer may get partial credits, depending on the nature of the

answer.
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STA447/2006: Stochastic Processes Midterm#1

Question 3. [20 pts, 10 pts each] Prove the following statements.

(1). Let P be an irreducible Markov chain in the state space S. If there exist
i, j ∈ S, such that Ei[Tj ] < +∞ and Ej [Ti] < +∞, then P is positive recurrent.

Answer: We note that

Ei[Ti] = Ei[Ti1Ti≤Tj ] + E[Ti1Ti>Tj ].

Clearly, we have

Ei[Ti1Ti≤Tj ] ≤ Ei[Tj1Ti≤Tj ].

On the other hand, we note that

E[Ti1Ti>Tj ] = E[Tj1Ti>Tj ] + E[(Ti − Tj)1Ti>Tj ]

By strong Markov property, after hitting j, the rest of the chain is a fresh new
Markov chain starting from j. So we have

E[(Ti − Tj)1Ti>Tj ] = P(Ti > Tj) · Ej [Ti] ≤ Ej [Ti].

Putting them together yields

Ei[Ti] ≤ Ei[Tj1Ti≤Tj ] + E[Tj1Ti>Tj ] + Ej [Ti] = Ei[Tj ] + Ej [Ti] < +∞.

Positive recurrence is a communicating class property. Since P is irreducible and i is
positive recurrent, the entire chain is therefore positive recurrent.

Rubrics: 7 points for getting the overall idea correct with some missing details.
2 points if only claiming Ei[Ti] < +∞ without a valid justification.
Incomplete ideas/proofs get some intermediate marks.
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(2). There exists a Markov chain P , such that P has a stationary distribution π,
but there exists i ∈ S, such that for any state j in the support of π (i.e. a state j
with π(j) > 0), we have

i → j, but lim
N→+∞

1

N

N−1∑
n=0

p
(n)
ij ̸= πj

Answer: Here’s a construction.

P =


0 1/2 0 1/2 0
0 1/2 1/2 0 0
0 1/2 1/2 0 0
0 0 0 1/2 1/2
0 0 0 1/2 1/2


. π = [0, 1/2, 1/2, 0, 0] is a stationary distribution, and any states in its support is
reachable by 1. However, we have

lim
N→+∞

1

N

N−1∑
n=0

p
(n)
12 =

1

4
̸= 1

2
.

Rubrics: Any valid construction with justification gets full points.
A correct construction without justification gets 5 points.
Incomplete justification may get intermediate points.
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Question 4. [10 pts] Let S = {0, 1, 2, · · · }, and consider the following Markov
chain

P0i =
1

i(i+ 1)
, and Pi(i−1) = 1,

for every i = 1, 2, · · · . Find a stationary measure of P , and determine whether the
Markov chain has a stationary distribution.

Answer: Solve for the stationary condition

πi = πi+1 +
1

i(i+ 1)
π0, for i = 1, 2, · · ·

π0 = π1.

Through a telescope sum, we obtain

π1 = πi +

i−1∑
j=1

π1
j(j + 1)

= πi + π1

i−1∑
j=1

(1
j
− 1

j + 1

)
= πi + π1

(
1− 1

i

)
,

So we have πi =
π1
i . A stationary measure does not have to be normalized. So we

let π1 = 1, and obtain

π0 = 1, and πi =
1

i
, for i = 1, 2, · · ·

Note that ∑
i∈S

πi = +∞.

So the chain is null recurrent, and the stationary distribution does not exist.
(Remark: it is also possible to conclude null recurrence by directly computing

the expected hitting time).
Rubrics: 7 points for computing the stationary measure correctly without

correctly concluding null recurrence.
5 points for proving null recurrence correctly without finding a correct stationary

measure.
2 points for writing down the correct stationary equation without solving it.
You’ll lose 2 points if you made some minor calculation mistake that does not

affect the nature of the result.
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Question 5. [15 pts] Let P be a reversible Markov chain over a finite state space S
(|S| < +∞). Let π be its stationary distribution. Suppose that P is irreducible and
aperiodic. From the class, we know that the Markov chain converges to its stationary
distribution. Through this question, we will quantify how fast it converges.

(1) [6 pts]. Show that the matrix P is diagonalizable and all its eigenvalues are
real.

Answer: By reversibility, we have

πipij = πjpji, for any i, j ∈ S.

Re-arranging yields

√
πipij/

√
πj =

√
πjpji/

√
πi.

In matrix notation, this can be re-written as(
Π1/2PΠ−1/2

)⊤
= Π1/2PΠ−1/2,

where Π = diag
(
πi
)
i∈S .

So the matrix Π1/2PΠ−1/2 is symmetric, and therefore diagonalizable with real
eigenvalues.

Suppose that Π1/2PΠ−1/2 = V DV −1 for real-diagonal matrix D, we have

P = (Π−1/2V )D(Π−1/2V )−1,

which is also diagonalizable with real eigenvalues.
Rubrics: 4 points for deriving the matrix Π1/2PΠ−1/2 without a complete

proof.
2 points for realizing the idea of relating reversibility to symmetric matrices, but

without the correct construction.
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(2) [9 pts]. Show that there exists a pair of constants c, λ > 0 depending on P ,
such that ∑

j∈S

∣∣∣p(n)ij − πj

∣∣∣ ≤ ce−λn,

for every i ∈ S.
[Hint: you can use the result of part (1) as given, even if you have not proven it.]

Answer: Since π = πP , we know that π is a left eigen-vector of P , with
eigen-value 1. On the other hand, we note that for any function f on the state space,
we have

EX0∼π

[
|(Pf)(X0)|2

]
= EX0∼π

[
E[f(X1) | X0]

2
]
≤ E

[
f(X1)

2
]
= E

[
f(X0)

2
]
.

So we have that ∑
i∈S

πi(Pf)2i ≤
∑
i∈S

πif
2
i , for any function f,

and consequently,

|||Π1/2PΠ−1/2|||2op = sup
f

∑
i∈S πi(Pf)2i∑

i∈S πif2
i

≤ 1.

So the eigenvalues of P has absolute value at most 1. By uniqueness of stationary
distribution, the eigenvalue 1 cannot have a multiplicity of more than 1. If −1 is an
eigen-value with left eigen-vector u, we have u = −uP . For any ε > 0, we have

(π + εu)Pn = πPn + εuPn = π + (−1)nεu.

We can choose ε > 0 small enough and fixed, such that π + εu is element-wise
positive, so that normalizing it yields a probability distribution. This implies that
a chain starting from such a distribution will oscillate and cannot converge, which
leads to contradiction.

So we conclude that, except for the eigen-value 1 corresponding to the left-
eigen-value π, all the eigen-values have absolute value strictly less than 1. We have
P = U−1DU , with

D = diag(1, λ2, λ3, · · · , λ|S|),

For any i, we have∣∣∣e⊤i Pnej − πj

∣∣∣ = ∣∣eiU−1DnUej − eiU
−1diag(1, 0, 0, · · · , 0)Uej

∣∣ ≤ |||U |||op · |||U−1|||op · max
2≤k≤|S|

|λk|n,

which is exponentially decaying.
Rubrics: 6 points for getting the idea of power iteration and eigen-values

bounded by 1, even without a complete justification.
3 points for realizing the key step is to prove eigen-value absolute value bound.
There are several other ways of proving this result, which may not rely on

eigen-decomposition. Other proofs or proof ideas will also get credit.
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